Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement.

نویسندگان

  • Ambrish Roy
  • Yang Zhang
چکیده

Proteins perform functions through interacting with other molecules. However, structural details for most of the protein-ligand interactions are unknown. We present a comparative approach (COFACTOR) to recognize functional sites of protein-ligand interactions using low-resolution protein structural models, based on a global-to-local sequence and structural comparison algorithm. COFACTOR was tested on 501 proteins, which harbor 582 natural and drug-like ligand molecules. Starting from I-TASSER structure predictions, the method successfully identifies ligand-binding pocket locations for 65% of apo receptors with an average distance error 2 Å. The average precision of binding-residue assignments is 46% and 137% higher than that by FINDSITE and ConCavity. In CASP9, COFACTOR achieved a binding-site prediction precision 72% and Matthews correlation coefficient 0.69 for 31 blind test proteins, which was significantly higher than all other participating methods. These data demonstrate the power of structure-based approaches to protein-ligand interaction predictions applicable for genome-wide structural and functional annotations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment

MOTIVATION Exploitation of locally similar 3D patterns of physicochemical properties on the surface of a protein for detection of binding sites that may lack sequence and global structural conservation. RESULTS An algorithm, ProBiS is described that detects structurally similar sites on protein surfaces by local surface structure alignment. It compares the query protein to members of a databa...

متن کامل

Structural and Functional Similarity between the Bacterial Type III Secretion System Needle Protein PrgI and the Eukaryotic Apoptosis Bcl-2 Proteins

BACKGROUND Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover bio...

متن کامل

eMatchSite: Sequence Order-Independent Structure Alignments of Ligand Binding Pockets in Protein Models

Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality exp...

متن کامل

Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin

Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...

متن کامل

Application of New Multiresolution Methods for the Comparison of Biomolecular Electrostatic Properties in the Absence of Global Structural Similarity

In this paper we present a method for the multi-resolution comparison of biomolecular electrostatic potentials without the need for global structural alignment of the biomolecules. The underlying computational geometry algorithm uses multi-resolution attributed contour trees (MACTs) to compare the topological features of volumetric scalar fields. We apply the MACTs to compute electrostatic simi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2012